Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Carbohydr Polym ; 335: 122087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616077

RESUMO

The aim of this study was to evaluate the impacts of enzymatically synthesized α-glucans possessing α-1,4- and α-1,6-glucose linkages, and varying in branching ratio, on colonic microbiota composition and metabolic function. Four different α-glucans varying in branching ratio were synthesized by amylosucrase from Neisseria polysaccharea and glycogen branching enzyme from Rhodothermus obamensis. The branching ratios were found to range from 0 % to 2.8 % using GC/MS. In vitro fecal fermentation analyses (n = 8) revealed that the branching ratio dictates the short-chain fatty acid (SCFA) generation by fecal microbiota. Specifically, slightly branched (0.49 %) α-glucan resulted in generation of significantly (P < 0.05) higher amounts of propionate, compared to more-branched counterparts. In addition, the amount of butyrate generated from this α-glucan was statistically (P > 0.05) indistinguishable than those observed in resistant starches. 16S rRNA sequencing revealed that enzymatically synthesized α-glucans stimulated Lachnospiraceae and Ruminococcus related OTUs. Overall, the results demonstrated metabolic function of colonic microbiota can be manipulated by altering the branching ratio of enzymatically synthesized α-glucans, providing insights into specific structure-function relationships between dietary fibers and the colonic microbiome. Furthermore, the slightly branched α-glucans could be used as functional carbohydrates to stimulate the beneficial microbiota and SCFAs in the colon.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Microbiota , Fermentação , RNA Ribossômico 16S/genética , Glucanos
2.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
3.
Immun Inflamm Dis ; 12(3): e1215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488697

RESUMO

BACKGROUND: Allergic rhinitis (AR) is the most prevalent form of atopic disease. Undaria pinnatifida has potent antioxidative, antidiabetic, and anti-inflammatory properties. AIMS: We investigated the immunomodulatory effect of Undaria pinnatifida extract (UPE) on allergic inflammation in an AR mouse model. MATERIALS & METHODS: Mice were sensitized and intranasally challenged with ovalbumin (OVA), and the Th1/Th2 and Th17/Treg-related cytokines and histopathology were exanimated after UPE treatments. Enzyme-linked immunosorbent assay was performed using serum samples and NALF to detect OVA-specific immunoglobulins and inflammatory cytokines. Mitogen-activated protein kinases (MAPKs) were measured by western blotting analysis, and an in vitro study measured mast cell activation induced by compound 48/80. RESULTS: After UPE treatment, nasal and lung allergy symptoms, nasal mucosal swelling, and goblet cell hyperplasia were ameliorated. Oral UPE regulated the balance of Th1/Th2 and Th17/Treg cell differentiation in AR mice in a dose-dependent manner. In addition, UPE attenuated the migration of eosinophils and mast cells to the nasal mucosa by suppressing nuclear factor kappa B (NF-κB)/MAPKs. The levels of anti-OVA IgE and IgG1 were also decreased. DISCUSSION: UPE inhibited inflammation by regulating the NF-κB/MAPKs signaling pathway and supressing the activation of critical immune cells such as eosinophils and mast cells. CONCLUSION: UPE may have therapeutic potential for AR.


Assuntos
60578 , Eosinófilos , Rinite Alérgica , Undaria , Animais , Camundongos , NF-kappa B/metabolismo , Mastócitos , Células Th2 , Rinite Alérgica/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Imunoglobulina E , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases
4.
Carbohydr Polym ; 331: 121898, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388043

RESUMO

Microbial exopolysaccharides (EPSs) are traditionally known as prebiotics that foster colon health by serving as microbiota nutrients, while remaining undigested in the small intestine. However, recent findings suggest that α-glucan structures in EPS, with their varied α-linkage types, can be hydrolyzed by mammalian α-glucosidases at differing rates. This study explores α-glucan-type EPSs, including dextran, alternan, and reuteran, assessing their digestive properties both in vitro and in vivo. Notably, while fungal amyloglucosidase - a common in vitro tool for carbohydrate digestibility analysis - shows limited efficacy in breaking down these structures, mammalian intestinal α-glucosidases can partially degrade them into glucose, albeit slowly. In vivo experiments with mice revealed that various EPSs elicited a significantly lower glycemic response (p < 0.05) than glucose, indicating their nature as carbohydrates that are digested slowly. This leads to the conclusion that different α-glucan-type EPSs may serve as ingredients that attenuate post-prandial glycemic responses. Furthermore, rather than serving as mere dietary fibers, they hold the potential for blood glucose regulation, offering new avenues for managing obesity, Type 2 diabetes, and other related-chronic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Camundongos , Animais , Glucose/química , alfa-Glucosidases/metabolismo , Glicemia/metabolismo , Glucanos , Mamíferos/metabolismo
5.
Food Sci Biotechnol ; 33(1): 63-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186624

RESUMO

Resistant starch (RS) has advantages for regulating the colon health as prebiotics and dietary fibers, and green banana has interested due to containing high amounts of RS. Here, the structural, physicochemical, and digestible characteristics of green banana starch from newly bred Songkibab (SB) were determined to evaluate its suitability for application as a new crop in response to global warming and for obtaining genetic diversity. SB starch has structural similarities to the Cavendish (CD) banana, which is widely consumed in Southeast Asia, in its ratio of B3-chains (in high amounts), flattened shapes of smooth surfaces, and B-type crystallinity. Physiochemically, SB shows comparable swelling power, amylose content, and viscosity pattern but a higher RS content. Conclusively, this study suggests that SB banana may be a good resource for replacing CD species with novel varieties in East Asia because of the high degree of similarity in the various characteristics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01331-z.

6.
Int J Biol Macromol ; 242(Pt 2): 124921, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201882

RESUMO

Amylosucrase from Neisseria polysaccharea (NpAS) produces the linear amylose-like α-glucans by the elongation property from sucrose, and 4,3-α-glucanotransferase from Lactobacillus fermentum NCC 2970 (4,3-αGT) newly synthesizes the α-1,3 linkages after cleaving the α-1,4 linkages by the glycosyltransferring property. This study focused on the synthesis of high molecular α-1,3/α-1,4-linked glucans by combining NpAS and 4,3-αGT and analyzed their structural and digestive properties. The enzymatically synthesized α-glucans have a molecular weight of >1.6 × 107 g mol-1, and the α-4,3 branching ratios on the structures increased as the amount of 4,3-αGT increased. The synthesized α-glucans were hydrolyzed to linear maltooligosaccharides and α-4,3 branched α-limit dextrins (α-LDx) by human pancreatic α-amylase, and the amounts of produced α-LDx were increased depending on the ratio of synthesized α-1,3 linkages. In addition, approximately 80 % of the synthesized products were partially hydrolyzed by mammalian α-glucosidases, and the glucose generation rates decelerated as the amounts of α-1,3 linkages increased. In conclusion, new types of α-glucans with α-1,4 and α-1,3 linkages were successfully synthesized by a dual enzyme reaction. These can be utilized as slowly digestible and prebiotic ingredients in the gastrointestinal tract due to their novel linkage patterns and high molecular weights.


Assuntos
Glucanos , Glicosiltransferases , Animais , Humanos , Glucanos/química , Glucose/química , alfa-Glucosidases , Sacarose/química , Mamíferos
7.
Food Sci Biotechnol ; 32(4): 565-575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911326

RESUMO

Amylosucrase can increase the amount of resistant starch (RS) in starch by transferring glucose from sucrose to amylopectin. Here, rice starch was modified using amylosucrase from Deinococcus geothermalis (DgAS). DgAS-modified rice starch (DMRS) increased the side-chain length of amylopectin and appeared in the form of B-type crystals. In vitro digestion analyses revealed that DMRS had a higher RS contents and lower digestion rate than native rice starch. When high-fat diet (HFD)-induced C57BL/6 mice were orally administered DMRS, body weight and white fat tissues of DMRS-fed HFD mice were not significantly different. However, serum leptin and glucose levels were significantly decreased and serum glucagon like peptide-1was increased in these mice. The cecal microbiome in DMRS-fed HFD mice was identified to investigate the role of DMRS in gut microbiota regulation. DMRS supplementation increased the relative abundance of Bacteroides, Faecalibaculum, and Ruminococcus in mouse gut microbiota. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01238-1.

8.
Food Sci Biotechnol ; 32(4): 517-529, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911335

RESUMO

Exopolysaccharide (EPS)-producing Bifidobacterium bifidum EPS DA-LAIM was isolated from healthy human feces, the structure of purified EPS from the strain was analyzed, and its prebiotic activity was evaluated. The EPS from B. bifidum EPS DA-LAIM is a glucomannan-type heteropolysaccharide with a molecular weight of 407-1007 kDa, and its structure comprises 2-mannosyl, 6-mannosyl, and 2,6-mannosyl residues. The purified EPS promoted the growth of representative lactic acid bacteria and bifidobacterial strains. Bifidobacterium bifidum EPS DA-LAIM increased nitric oxide production in RAW 264.7 macrophage cells, indicating its immunostimulatory activity. Bifidobacterium bifidum EPS DA-LAIM also exhibited high gastrointestinal tract tolerance, gut adhesion ability, and antioxidant activity. These results suggest that EPS from B. bifidum EPS DA-LAIM is a potentially useful prebiotic material, and B. bifidum EPS DA-LAIM could be applied as a probiotic candidate. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01213-w.

9.
Food Chem ; 417: 135892, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933421

RESUMO

Isomaltooligosaccharides (IMOs) are widely used as prebiotic ingredients that promote colon health; however, recent studies revealed that these are slowly hydrolyzed to glucose within the small intestine. Here, novel α-glucans with a higher number of α-1,6 linkages were synthesized from maltodextrins using the Thermoanaerobacter thermocopriae-derived transglucosidase (TtTG) to decrease susceptibility to hydrolysis and improve slow digestion properties. The synthesized long-sized IMOs (l-IMOs; 70.1% of α-1,6 linkages), comprising 10-12 glucosyl units, exhibited slow hydrolysis to glucose when compared to commercial IMOs under treatment with mammalian α-glucosidase level. In male mice, the ingestion of l-IMOs significantly decreased the post-prandial glycemic response compared to other samples (p < 0.05). Therefore, enzymatically synthesized l-IMOs can be applied as functional ingredients for the modulation of blood glucose homeostasis in obesity, Type 2 diabetes, and other chronic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Glucose , alfa-Glucosidases , Mamíferos , Digestão
10.
Carbohydr Polym ; 310: 120730, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925263

RESUMO

α-Limit dextrins (α-LDx) are slowly digestible carbohydrates that attenuate postprandial glycemic response and trigger the secretion of satiety-related hormones. In this study, more highly branched α-LDx were enzymatically synthesized to enhance the slowly digestible property by various origins of glycogen branching enzyme (GBE), which catalyzes the transglycosylation to form α-1,6 branching points after cleaving α-1,4 linkages. Results showed that the proportion of branched α-LDx in starch molecules increased around 2.2-8.1 % compared to α-LDx from starch without GBE treatment as the ratio of α-1,6 linkages increased after different types of GBE treatments. Furthermore, the enzymatic increment of branching points enhanced the slowly digestible properties of α-LDx at the mammalian α-glucosidase level by 17.3-28.5 %, although the rates of glucose generation were different depending on the source of GBE treatment. Thus, the highly branched α-LDx with a higher amount of α-1,6 linkages and a higher molecular weight can be applied as a functional ingredient to deliver glucose throughout the entire small intestine without a glycemic spike which has the potential to control metabolic diseases such as obesity and type 2 diabetes.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Diabetes Mellitus Tipo 2 , Animais , Humanos , Dextrinas , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Amido/metabolismo , Glucose , Glicogênio , Mamíferos/metabolismo
11.
Microorganisms ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557684

RESUMO

Exopolysaccharide (EPS)-producing Lacticaseibacillus paracasei EPS DA-BACS was isolated from healthy human feces and its probiotic properties, as well as the structure and prebiotic activity of the EPS from this strain were examined. EPS from L. paracasei EPS DA-BACS had a ropy phenotype, which is known to have potential health benefits and is identified as loosely cell-bounded glucomannan-type EPS with a molecular size of 3.7 × 106 Da. EPS promoted the acid tolerance of L. paracasei EPS DA-BACS and provided cells with tolerance to gastrointestinal stress. The purified EPS showed growth inhibitory activity against Clostridium difficile. L. paracasei EPS DA-BACS cells completely inhibited the growth of Bacillus subtilis, Pseudomonas aeruginosa, and Aspergillus brasiliensis, as well as showed high growth inhibitory activity against Staphylococcus aureus and Escherichia coli. Treatment of lipopolysaccharide-stimulated RAW 264.7 cells with heat-killed L. paracasei EPS DA-BACS cells led to a decrease in the production of nitric oxide, indicating the anti-inflammatory activity of L. paracasei EPS DA-BACS. Purified EPS promoted the growth of Lactobacillus gasseri, Bifidobacterium bifidum, B. animalis, and B. faecale which showed high prebiotic activity. L. paracasei EPS DA-BACS harbors no antibiotic resistance genes or virulence factors. Therefore, L. paracasei EPS DA-BACS exhibits anti-inflammatory and antimicrobial activities with high gut adhesion ability and gastrointestinal tolerance and can be used as a potential probiotic.

12.
Food Sci Biotechnol ; 31(9): 1179-1188, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919361

RESUMO

Amylosucrase from Neisseria polysaccharea (NpAS) synthesizes α-1,4 glucan polymer from sucrose. In this study, we coated various botanical sources of raw starch with an α-glucan layer generated by NpAS to improve physicochemical properties. Field-emission scanning electron microscopy demonstrated that all surfaces of the starch granules were successfully coated via the NpAS reaction. X-ray diffraction analysis revealed that the crystallinity decreased and the crystal pattern changed to C-type as an amylose layer formed around the surface of the starch granules. Based on rapid viscosity and differential scanning calorimetry analyses, the gelatinization resistance of the α-glucan-coated starch increased owing to decreased viscosity and increased melting temperature. Therefore, the α-glucans coated the starches by enzymatic reactions of various botanical sources; these have applicability in the food and starch industries owing to various physicochemical properties such as enhanced thermostability. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01113-z.

13.
Food Sci Biotechnol ; 31(3): 343-347, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35273824

RESUMO

The lyophilization process is the most convenient and successful method to preserve probiotics, although microorganisms are exposed to conditions of extremely low freezing temperatures as well as dehydration. In this study, we evaluated the cryoprotective effect of turanose on Lactobacillus paracasei subsp. paracasei, L. casei 431 (L. casei 431) as a method to increase survival rate by improving cell viability. The results indicated that the viability of L. casei 431 was 9.6% without the cryoprotective agent, whereas bacterial cell viability was increased to 67.1% with the addition of 12% turanose. When turanose-treated freeze-dried cells were stored at 4 °C for 30 days, the survival rate decreased from 67.1 to 53.4%. Furthermore, cell viability significantly decreased by 50% after 30 days when stored at 25 °C with the same amount of turanose. Overall, turanose may be used as an effective cryoprotectant to preserve probiotics against the freeze-drying process and for extended storage at 4 °C.

14.
J Med Food ; 25(2): 146-157, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35148194

RESUMO

Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are characterized by chronic gastrointestinal inflammation with continuous relapse-remission cycles. This study aimed to evaluate the protective effect of Bifidobacterium bifidum BGN4 as a probiotic or paraprobiotic against dextran sulfate sodium (DSS)-induced colitis in mice. Ten-week-old female BALB/c mice were randomly divided into five groups. The control (CON) and DSS groups received oral gavage of PBS, whereas the live B. bifidum (LIVE), heat-killed B. bifidum BGN4 (HEAT), and lysozyme-treated B. bifidum BGN4 (LYSOZYME) groups received live B. bifidum BGN4, heat-killed B. bifidum BGN4, and lysozyme-treated B. bifidum BGN4, respectively, for 10 days, followed by DSS supply to induce colitis. The paraprobiotic (HEAT and LYSOZYME) groups had less body weight loss and colon length shortening than the DSS or LIVE groups. The LYSOZYME group exhibited better preserved intestinal barrier integrity than the LIVE group by upregulating gap junction protein expression possibly through activating NOD-like receptor family pyrin domain containing 6/caspase-1/interleukin (IL)-18 signaling. The LYSOZYME group showed downregulated proinflammatory molecules, including p-inhibitor of kappa B proteins alpha (IκBα), cycloxygenase 2 (COX2), IL-1ß, and T-bet, whereas the expression of the regulatory T cell transcription factor, forkhead box P3 expression, was increased. The paraprobiotic groups showed distinct separation of microbiota distribution and improved inflammation-associated dysbiosis. These results suggest that B. bifidum BGN4 paraprobiotics, especially lysozyme-treated BGN4, have a preventive effect against DSS-induced colitis, impacting intestinal barrier integrity, inflammation, and dysbiosis.


Assuntos
Bifidobacterium bifidum , Colite , Probióticos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética
15.
Food Chem ; 383: 132456, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182873

RESUMO

Isomaltooligosaccharides (IMOs) have been characterized as dietary fibers that resist digestion in the small intestine; however, previous studies suggested that various α-glycosidic linkages in IMOs were hydrolyzed by mammalian α-glucosidases. This study investigated the hydrolysis of IMOs by small intestinal α-glucosidases from rat and human recombinant sucrase-isomaltase complex compared to commonly used fungal amyloglucosidase (AMG) in vitro. Interestingly, mammalian α-glucosidases fully hydrolyzed various IMOs to glucose at a slow rate compared with linear maltooligosaccharides, whereas AMG could not fully hydrolyze IMOs because of its very low hydrolytic activity on α-1,6 linkages. This suggests that IMOs have been misjudged as prebiotic ingredients that bypass the small intestine due to the nature of the assay used. Instead, IMOs can be applied in the food industry as slowly digestible materials to regulate the glycemic response and energy delivery in the mammalian digestive system, rather than as dietary fibers.


Assuntos
Fibras na Dieta , alfa-Glucosidases , Animais , Glicemia , Carboidratos da Dieta , Glucose , Hidrólise , Mamíferos , Ratos
16.
Carbohydr Polym ; 278: 119016, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973805

RESUMO

Increasing α-1,6 linkages in starch molecules generates a large amount of α-limit dextrins (α-LDx) during α-amylolysis, which decelerate the release of glucose at the intestinal α-glucosidase level. This study synthesized highly branched α-glucans from sucrose using Neisseria polysaccharea amylosucrase and Rhodothermus obamensis glycogen branching enzyme to enhance those of slowly digestible property. The synthesized α-glucans (Mw: 1.7-4.9 × 107 g mol-1) were mainly composed of α-1,4 linkages and large proportions of α-1,6 linkages (7.5%-9.9%). After treating the enzymatically synthesized α-glucans with the human α-amylase, the quantity of branched α-LDx (36.2%-46.7%) observed was higher than that for amylopectin (26.8%) and oyster glycogen (29.1%). When the synthetic α-glucans were hydrolyzed by mammalin α-glucosidases, the glucose generation rate decreased because the amount of embedded branched α-LDx increased. Therefore, the macro-sized branched α-glucans with high α-LDx has the potential to be used as slowly digestible material to attenuate postprandial glycemic response.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glucanos/biossíntese , Glucose/metabolismo , Glucosiltransferases/metabolismo , Glucanos/química , Humanos , Neisseria/enzimologia , Rhodothermus/enzimologia , alfa-Glucosidases/metabolismo
17.
J Sci Food Agric ; 102(11): 4419-4424, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35077587

RESUMO

BACKGROUND: Inhibition of intestinal α-glucosidases from rat intestinal acetone powder (RIAP) has been widely used in research focused on regulating glucogenesis to be applied as a strategy to control obesity and type II diabetes. However, the crude extract has different compositions of α-glucosidases than a complete RIAP suspension due to enzymes anchored on the intestinal tissues after the extraction. Here, the inhibitory effects of different pharmaceutical and food-grade inhibitors on the enzymes in the RIAP suspension were investigated. RESULTS: Instead of crude extracts from RIAP, the RIAP suspension without the extraction process was applied to optimize the α-glucosidase inhibitory model by pharmaceutical/natural inhibitors. The results clearly showed that the half-maximal inhibitory concentration ratios of four individual α-glucosidases by various inhibitors were different between the RIAP suspension and the crude extract. In particular, isomaltase from the RIAP suspension required more inhibitors than the crude extraction did, as this enzyme is still anchored to the remaining intestinal tissue from the extraction process. CONCLUSION: The crude extract from RIAP contains only a portion of the enzymes, which poses limitations for determining the precise inhibitory properties by various types of enzyme inhibitors. On the contrary, an in vitro assay with RIAP suspension that has all the α-glucosidases is a more suitable method for determining digestibility of glycemic carbohydrates. This new approach can be applied to the development of natural/synthetic α-glucosidase inhibitors to attenuate the postprandial glycemic response more accurately. © 2022 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Tipo 2 , alfa-Glucosidases , Animais , Glicemia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Intestinos , Ratos , alfa-Glucosidases/química
18.
J Appl Microbiol ; 132(4): 3189-3200, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34878713

RESUMO

AIMS: This study aimed to evaluate the efficacy of paraprobiotics Lactobacillus acidophilus PIN7 supplementation against dextran sodium sulphate (DSS)-induced colitis in mice and to determine their mechanisms of the action. METHODS AND RESULTS: Ten-week-old female BALB/C mice were randomly divided into five groups. Each group was administered with PBS (control and DSS group), live PIN7 (LIVE group), heat-killed PIN7 (HEAT group) or lysozyme-treated PIN7 (LYSOZYME group) for 10 days followed by 2.5% DSS supply in drinking water for 5 days except for the control group. Colitis-associated DAI scores were significantly (p < 0.05) attenuated in HEAT and LYSOZYME group. The HEAT group exhibited significantly (p < 0.05) lower colonic tissue damage score compared to the DSS group. Furthermore, HEAT and LYSOZYME groups showed significantly (p < 0.05) higher colonic expressions of toll-like receptor (TLR) 6 and intestinal junction protein E-cadherin and occludin compared to the DSS group. LYSOZYME group showed significantly (p < 0.05) lower colonic expressions of Th2 cell-associated pro-inflammatory molecules, namely GATA3 and IL-4, and higher expression of anti-inflammatory NLRP6 and IL-18 compared to the DSS group. Also, HEAT group exhibited significantly (p < 0.05) lower colonic p-IκBα expression compared to the DSS group, while COX-2 expression was significantly (p < 0.05) suppressed by both paraprobiotics supplementation. Paraprobiotics significantly altered the composition of the intestinal microbiota. CONCLUSION: Paraprobiotic L. acidophilus PIN7 ameliorated DSS-induced colitis by regulating immune-modulatory TLR6 signalling and gut microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests paraprobiotic L. acidophilus PIN7 are superior candidates to prevent intestinal inflammation associated with dysregulated immune responses.


Assuntos
Colite , Probióticos , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Modelos Animais de Doenças , Feminino , Lactobacillus acidophilus , Camundongos , Camundongos Endogâmicos BALB C , Probióticos/farmacologia
19.
Carbohydr Polym ; 275: 118685, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742415

RESUMO

Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.


Assuntos
Dextrinas/química , Dextrinas/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Streptococcus thermophilus/enzimologia , Amilose/metabolismo , Digestão , Glucose/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química , Humanos , Hidrólise , Peso Molecular , alfa-Amilases Pancreáticas/metabolismo , Amido/química , alfa-Glucosidases/metabolismo
20.
Saudi J Biol Sci ; 28(9): 5115-5118, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466089

RESUMO

Bifidobacterium bifidum BGN4 has been shown to improve the immune system by regulating interleukin (IL)-6 in RAW 264.7 macrophage cells. In this study, the dead cells of B. bifidum BGN4 were produced by enzymatic and physical processing to enhance the inhibition properties of pro-inflammatory cytokines using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Notably, the secretion levels of cytokines such as interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor (TNF)-α were decreased by the cell-wall disrupted extracts compared to heat-killed cells. The result suggests that the exposed interior-surface of B. bifidum BGN4 has a potential ability to regulate the immune-responses in the gastrointestinal tract due to major substances in inside-cell wall such as peptidoglycan and teichoic acids. In conclusion, the lysed and disrupted cells from the inside out of B. bifidum BGN4 have anti-inflammatory properties as paraprobiotic agents to control chronic inflammatory related-diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...